Optimization of high-order diagonally-implicit Runge–Kutta methods
نویسندگان
چکیده
منابع مشابه
Effective order strong stability preserving RungeKutta methods
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...
متن کاملDiagonally Implicit Symplectic Runge-Kutta Methods with High Algebraic and Dispersion Order
The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods.
متن کاملDiagonally implicit Runge-Kutta methods for 3D shallow water applications
We construct A-stable and L-stable diagonally implicit Runge-Kutta methods of which the diagonal vector in the Butcher matrix has a minimal maximum norm. If the implicit Runge-Kutta relations are iteratively solved by means of the approximately factorized Newton process, then such iterated Runge-Kutta methods are suitable methods for integrating shallow water problems in the sense that the stab...
متن کاملDiagonally Implicit Symplectic Runge-Kutta Methods with Special Properties
The numerical integration of Hamiltonian systems is considered in this paper. Diagonally implicit Symplectic Runge-Kutta methods with special properties are presented. The methods developed have six and seven stages algebraic order up to 5th and dispersion order up to 8th.
متن کاملImplicit Positivity-preserving High Order
Positivity-preserving discontinuous Galerkin (DG) methods for solving hyperbolic 5 conservation laws have been extensively studied in the last several years. But nearly all the devel6 oped schemes are coupled with explicit time discretizations. Explicit discretizations suffer from the 7 constraint for the Courant-Friedrichs-Levis (CFL) number. This makes explicit methods impractical 8 for probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2018
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2018.05.020